
ANALYSIS OF LATTICE-BASED CRYPTOGRAPHY ALGORITHMS

Amey Meher
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
avmeher@ncsu.edu

Deep Mehta
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
dmmehta2@ncsu.edu

Gage Fringer
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
gwfringe@ncsu.edu

Group IJ

1 Introduction
Due to the recent developments in Quantum computing, traditional methods for data encryption such as RSA are at the
risk of getting obsolete. This is due to the fact that Quantum computers are capable of performing certain computations
in a much faster sense than conventional computers, and by using this potential of computing power, attackers would be
able to decrypt these traditional encryption algorithms.

In the advent of these technologies, NIST is introducing new standards for Post-Quantum era encryption. One of the
approaches proving to be a promising option is lattice-based encryprtion schemes. Lattice-based cryptography has
been studied actively over the last decade due to its distinctive advantages in strong security, fast implementations, and
versatility applications. There are different implementations for the Lattice-based cryptography algorithms, namely
Frodo, Lizard / Ring-Lizard, Kyber and NewHope. These few are the active candidates to post-quantum cryptography
due to their applicabilities and efficiences.

2 Background knowledge
With the concern that quantum computing possessed on current cryptographic schemes, NIST created the public project
for Post-Quantum Cryptography (PQC) in 2017 to engage groups in working to implement algorithms with an aim of
making them quantum-resistant in the hopes of eventually standardizing selected algorithms after multiple rounds of
selection. This helped to motivate the importance of creating such an algorithm and also brought to light a variety of
different attempts at creating these algorithms.

The algorithms are built on underlying problems which are assumed to not have polynomial solutions. As the RSA
algorithm is based on finding the factors of large prime numbers, these algorithms are based on a variety of problems
based on Lattices. Some examples of these problems relevant to the algorithms being observed are:

Shortest Vector Problem Closest Vector Problem

Figure 1: Visual representations of base problems

• Short vector problem: Suppose we are given a long basis for some lattice L. This problem asks us to find a
grid point in L as close as possible to the origin point.



Analysis of Lattice-based Cryptography Algorithms

• Short basis problem: Suppose we are given a long basis for some lattice L. The short basis problem asks us to
find a short basis for L.

• Closest vector problem: Suppose we are given a long basis for some lattice L. Also, we are given a randomly
chosen challenge point P. The closest vector problem asks us to find the closest lattice point in L to challenge P.

3 Experiment setup
Our team has selected to survey the current state of PQC via some of the algorithms that have been developed to date.
Along with this, we intend to gain in-depth knowledge of some of the relevant lattice-vector problems mentioned above
and understand better why these do not have polynomial time solutions.

After researching some PQC algorithms, our team decided to focus on the NewHope and Kyber algorithms for their
documentation in their public repositories, along with their similarities in gathering results. Both of these submissions
to NIST’s project have test files with various input sizes along with time measurements based on cycle counts, so we
will plan to run these files to generate our own values for these algorithms and further analyze them accordingly. We
plan to analyze both algorithms on the below factors:

• Trend for encryption time / operations for different message sizes

• Trend for decryption time / operations for different cipher sizes

• Trend for cipher sizes after encryption for different message sizes

• Analysis of breaking the cipher for a conventional computer

4 LWE Algorithm
In post-quantum cryptography, Learning with error is a key-agreement protocol that is designed to resist quantum
computer attacks. NewHope is based on a mathematical problem ring learning with errors (RLWE) which are believed
to be hard to break for both classical and quantum computers. Kyber is based on modular learning with errors (MLWE).
This protocol offers a practical and secure solution for post-quantum key exchange for TLS and other applications.

The basic idea is that one party generates a random polynomial and adds some noise to it, then sends it to the other
party. The other party also generates a random polynomial and adds some noise to it, then multiplies it with the received
polynomial and sends back the result. Both parties can then use some clever techniques to extract the same secret key
from their polynomials

Some of the design choices of NewHope are:

1. It uses binomial sampling to generate the noise vectors, which is simpler and faster than using Gaussian
sampling.

2. It uses a novel method for error reconciliation that corrects errors in groups of 2 or 4 coefficients at a time,
which reduces the decryption failure rate and increases the security.

3. It derives the base vector from the output of a hash function, which prevents the use of “back-doored” values
that could compromise the security

It is an unauthenticated key-exchange protocol; by not designing or instantiating a lattice-based authenticated key-
exchange protocol we reduce the complexity of the key-exchange protocol and simplify the choice of parameters. It
as an advantage to decouple key exchange and authentication as it allows a protocol designer to choose the optimal
algorithm for both tasks.

For the same lattice dimension, this algorithm doubles the security parameter, halves the communication overhead, and
speeds up computation by more than a factor of 8 in a portable C implementation and by more than a factor of 27 in an
optimized implementation targeting current Intel CPUs. These speedups are achieved with comprehensive protection
against timing attacks.

2



Analysis of Lattice-based Cryptography Algorithms

Figure 2: New Hope Encryption Process

The protocol consists of four main steps: parameter generation, key generation, reconciliation, and shared secret
derivation. The space and time analysis of NewHope depends on the choice of parameters and the implementation
platform. Here is a brief overview of the space and time complexity of NewHope:

1. Parameter generation: This step involves generating a public base vector a from a seed using a hash function.
The space complexity is O(n) bits, where n is the dimension of the ring. The time complexity is O(n) hash
function evaluations.

2. Key generation: This step involves sampling two secret polynomials s and e from a binomial distribution,
computing b = as + e mod q, where q is a prime modulus, and sending b as the public key. The space
complexity is O(n log q) bits for storing s, e, and b. The time complexity is O(n log n) operations for
polynomial multiplication using NTT, plus O(n) operations for sampling and addition.

3. Reconciliation: This step involves receiving a public key b’ from the other party, computing u = bs’ + e’ mod
q, where s’ and e’ are secret polynomials sampled from a binomial distribution, and applying a reconciliation
function to u to obtain a bit string c. The space complexity is O(n log q) bits for storing s’, e’, u, and c. The
time complexity is O(n log n) operations for polynomial multiplication using NTT, plus O(n) operations for
sampling, addition, and reconciliation.

4. Shared secret derivation: This step involves applying a hash function to c to obtain a shared secret z. The space
complexity is O(k) bits, where k is the output length of the hash function. The time complexity is O(k) hash
function evaluations.

The overall space complexity of NewHope is O(n log q + k) bits, where n is the dimension of the ring, q is the prime
modulus, and k is the output length of the hash function. The overall time complexity of NewHope is O(n log n + k)
operations, where n is the dimension of the ring and k is the output length of the hash function.

5 Implementation
Given that little information was found on these algorithms in terms of pseudocode or how they specifically work, the
analysis was done with forks of each algorithm’s public repositories (links in the references). Within these copies, each
algorithm had ’ref’ folders which contained test files that were used after compilation. All of these test files were run,
and their results were stored in a ’results’ directory within the ref folder.

All of the test file runs were done on the following hardware:

• Ubuntu 20.04.5 LTS Virtual Machine

• Proc: Intel Core i7-8565U @ 1.80 GHz (4 of 8 cores)

• Memory: 7.8 GB

3



Analysis of Lattice-based Cryptography Algorithms

6 Analysis
6.1 Differences in Timing
The section with some of the most notable differences was in looking at the measured number of clock cycles on
average when running either of these two algorithms. Both algorithms’ ’speed’ tests provided these statistics for a
number of different categories, but the three focused on are ’Keypair’ (where the keys are generated), ’Encapsulation’
(where the message is encrypted using the key), and ’Decapsulation’ (unencrypting the message with the key).

Figure 3: Clock Cycle speeds for the NewHope algorithm

Looking at the above figure, we can see that a general trend of an increase in clock cycles occurs as the input size
increases from 512 to 1024. A more interesting observation to note was that the 512 byte input had a similar runtime
to the 1024 byte input when the 512 byte input used Chosen-ciphertext Attack (CCA) security and the 1024 byte
input did not. Generally speaking, the use of CCA security seems to double the required time for generating keys and
encrypting the data when compared to a same-size input not using CCA. This makes sense because NewHope could be
considerably faster when not needing to implement extra measures to handle CCA security. The other thing to note
is that inputs that do not use CCA security seem to have a substantially faster decapsulation time, which could be
attributed to the fact that with CCA, extra work is done to attempt to gain the secret key, which could substantially
impact the process of decryption when CCA is enabled.

Figure 4: Clock Cycle speeds for Kyber algorithm

The above figure follows a similar trendline to Figure 2 in that larger input sizes tend to have longer runtimes. An
interesting observation comes in how the ’90s’ versions of input sizes have a larger difference from their base file as the

4



Analysis of Lattice-based Cryptography Algorithms

input size increases, which is likely due to the fact that the 90s files use AES-256 in counter mode and SHA2 instead
of SHAKE. These files were introduced in a later iteration of the NIST submission, and was meant to showcase how
Kyber would behave on hardware where the symmetric primitives exist. The outliers in spread of values for 1024-90s
may exist because the hardware used may not be what was considered appropriate by the code authors, causing some
issues in validity of that data. Otherwise, it was interesting to see that encapsulation and decapsulation took similar
clock cycles.

Figure 5: Direct Comparison of both algorithms

It is important to note that before analysis was done on this direct comparison between the two algorithms that since
each algorithm had two iterations of its testing, these were averaged together before a direct comparison, as seen in
the figure above. That being said, it could be seen that Newhope is generally a more costly algorithm when using 512
byte input, but Kyber tends to take a bit longer overall with larger inputs. This is interesting because while the two
algorithms are based on the same problem (LWE), Kyber utilizes some understanding of two subsets of the problem
(Module-LWE and Ring-LWE) where NewHope focuses on Ring-LWE, and the impact of this could be the cause of
increased encryption time. Another interesting note was that when taking the averages of these two algorithms and
directly comparing them, each algorithm tends to follow a different trend in performance. For example, encapsulation
was the most costly action for NewHope, while the same could be said for decapsulation with Kyber.

6.2 Differences in Cipher Size

Input Size (Bytes) NewHope Kyber
512 1104 768
1024 2184 1568

Table 1: Size of Cipher for a given input size

Looking at the above table, we can see that regardless of input size, NewHope has a larger cipher than Kyber. This
is interesting to see because it would explain why some actions would take longer on a 512 byte input for NewHope
(i.e. a longer cipher would mean more time having to encrypt/decrypt), but would not be the same reasoning for why
NewHope would be faster than Kyber on the larger input size. This could be because Kyber seems to specify a target
cipher size, so the input size had the same cipher size regardless of file type (90s or base), and since NewHope did not
seem to have this, the variance increased cipher sizes.

5



Analysis of Lattice-based Cryptography Algorithms

7 Conclusion
When looking holistically at all of the above observations, we can see that the current state of PQC algorithms is a fairly
wide field, but NIST has decided to take the charge on making sure that it is a matter of importance. Even algorithms
such as NewHope and Kyber that have the same basis yield substantially different results, but the consistency of Kyber’s
cipher size and generally more consistent times between all three actions made it the more desirable of these two. Future
work would need to be done against other algorithms in this field (i.e. the others listed in the Introduction) to further
understand the current space better.

8 References
[1] How Quantum Computers Break The Internet... Starting Now - Veritasium, Mar. 20, 2023

[2] Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE - Joppe Bos, Craig Costello, Léo
Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila., 23rd ACM
Conference on Computer and Communications Security, 2016.

[3] CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM - Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé, International Association for
Cryptologic Research, 2017

[4] Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR - Jung Hee Cheon,
Duhyeong Kim, Joohee Lee, and Yongsoo Song, International Association for Cryptologic Research, 2016

[5] Post-quantum key exchange – a new hope - Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe,
International Association for Cryptologic Research, 2015

[6] What is Lattice-Based Cryptography and Why You Should Care - Joël Alwen. Medium. Jun. 15, 2018

[7] CRYSTALS-kyber GitHub. GitHub. Last Edited: Dec. 13, 2020

[8] NewHope GitHub. GitHub. Last Edited: Feb. 17, 2023

[9] Selected Algorithms - 2022, NIST PQC, National Institute of Standards and Technology, 2022

[10] NewHope - Wikipedia. Wikipediea. Last Edit: Dec. 6, 2022

[11] Efficient Parallel Implementations of LWE-Based Post-Quantum Cryptosystems on Graphics Processing Units -
Scientific Figure on ResearchGate. ResearchGate. 2020

[12] NewHope - Post-quantum key encapsulation. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Last Update: Apr. 14, 2020

6

https://www.youtube.com/watch?v=-UrdExQW0cs7
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2017/634.pdf
https://eprint.iacr.org/2016/1126.pdf
https://eprint.iacr.org/2015/1092
https://medium.com/cryptoblog/what-is-lattice-based-cryptography-why-should-you-care-dbf9957ab717
https://github.com/pq-crystals/kyber
https://github.com/newhopecrypto/newhope
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://en.wikipedia.org/wiki/NewHope
https://www.researchgate.net/figure/NewHope-encryption-process_fig2_346228460
https://www.newhopecrypto.org/


Analysis of Lattice-Based 
Cryptographic Algorithms

Group IJ:
Amey Meher 
Deep Mehta
Gage Fringer



RSA Encryption algorithm

It is based on the difficulty of factoring the product of two 
large prime numbers.

Consider the product of two large prime numbers as N. Could 
you guess would be the time complexity for factoring N into 
the original two prime numbers?



Time complexity for General number field science which is 
considered as the best known factoring algorithm on a 

conventional computer

exp((log N)⅓ (log log N)⅔)



Shor’s algorithm
Quantum computing has the ability to crack 
encryption algorithms that have been considered 
secure for decades.

Shor’s algorithm, one of the most famous 
algorithm is able to factor product of large prime 
numbers in polynomial time of O(N3), reducing 
the time to break the encryption from trillions of 
years to just few hours.



Construction of a new 
problem

Given a random problem matrix and a 
matrix obtained after multiplying with a 
secret matrix, find the values of the secret 
matrix.

Easy to solve for the matrix using Gaussian 
elimination technique (Algebra 101)



Introducing error matrix
Though after introducing an error 
by adding the error matrix to the 
result, this makes it difficult to 
guess the secret key.

This fundamental problem which 
is known as Learning with Errors 
(LWE) is used in the new 
cryptography algorithms which 
are accepted by NIST.



Learning with Errors (LWE)

This is at least as hard as 
factorization of big integers, but also 

Quantum safe



NP-Hardness proof
Worst case Gap Shortest Vector Problem

Average case Learning with error Problem

Reduction



Lattices

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Integer linear combinations of a certain basis. Also, there are many bases for the same lattice, some short and 
orthogonal whereas other long and acute.



Shortest vector problem
Given some basis for 
the lattice, find the 
shortest non-zero 
lattice point.



Regev's iterative reduction
Theorem. [Reg05] 

For any modulus q < 2poly (n), solving the decision LWE problem is at least as hard as quantumly 
solving GapSVP, and SIVP, on arbitrary n-dimensional lattices. 

On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[Regev; STOC 2005] 



General 
working of the 
cryptography 

algorithms



Encryption A and b: Receiver’s public 
key which is available to 
sender

s’: Sender’s secret key

e’: Random error

q: Random prime number

b’ and c: Cipher text sent 
from sender to receiver



Decryption b’ and c: Cipher text 
received by receiver

s: Receiver’s secret key

q: Random prime number

m: Deciphered/Original text



Lattice based 
cryptography 
methods

Kyber is based on Modular Learning 
with Error

NewHope is based on Ring Learning 
with Error

KyberNewHope



New Hope RLWE Kyber MLWE
Each row is the 
cyclic shift of the 
row above

Wrapping rule is x 
maps to -x mod q

q: Random prime 
number

So we need to just 
send the first row Every matrix entry is polynomial in 

Zq[x]/(xn +1)



Implementation
- Submissions to NIST's challenge are 

Open-Source, on GitHub
- Each contain /ref folder to run tests on any 

hardware
- Over a dozen measured metrics based on 

clock cycle



Findings
- Analysis on Cipher Size

- Kyber has smaller ciphers at same size

- Analysis on Clock Cycles
- Different input sizes yield different optimal 

algorithms



● Quantum computers can crack RSA encryption using Shor’s algorithm in 
polynomial time.

● The security of lattice based cryptography algorithms is based on the hardness 
of the LWE problem which is in turn based on the hardness of the SVP problem. 
This makes lattice based algorithms an interesting candidate for many PQC 
applications.

● NewHope and Kyber are two lattice based algorithms which are based on LWE 
problem. NewHope takes longer time for encryption as compared to Kyber, but 
lesser time for decryption.

Conclusion



Thank You


